
$\begin{array}{c} {\rm ETS\text{-}1000L} \\ {\rm Ethernet/Gigabit~Ethernet~loopback} \end{array}$ Operating manual Version 2.0.0, 2016

Metrotek

Contents

1	Ger	neral description	ŀ
2	Sup	oply kit	7
3	Ove	erview	ç
	3.1	Appearance	Ć
	3.2	External connectors	11
	3.3	Setting-up procedures	11
	3.4	Restore device settings	
	3.5	Reset settings to default	12
4	Loo	pback	13
	4.1	Loopback adjustment	15
5	Rer	note management	17
	5.1	Remote control via Telnet protocol	17
	5.2	OAM	20
	5.3		
	5.4	Upgrading software versions	
		5.4.1 Device preparing for upgrading software versions	22
		5.4.2 PC setup for device software upgrading	
6	Tro	ubleshooting	2.

1. General description

Ethernet/Gigabit Ethernet loopback device **ETS-1000L** is intended for loopback performing at the physical, data link, network and transport layers of the OSI model in IP/Ethernet networks.

Incoming traffic is being retransmitted backward with possibility of source and destination MAC/IP addresses and TCP/UDP port numbers swapping.

To switch between loopback layers ${\bf L}$ button is used. The device allows to perform loopback control via OAM protocol and remote control via TELNET protocol.

2. Supply kit

Table 2.1. Supply kit

Item	Quantity
Ethernet/Gigabit Ethernet loopback device ETS-1000L	1
Power supply unit GS06E (9 V; 0,3 A)	1
Operating manual	1

3. Overview

3.1 Appearance

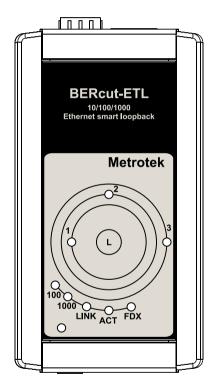


Figure 3.1. Appearance of $\bf ETS\text{-}1000L$

LEDs

LEDs are located on the front panel of ${\bf ETS-1000L}$. They show loopback layer, Ethernet links and power supply unit connection state.

 $Loop back\ layer\ indicators$

• 1 — layer 1 loopback;

ETS-1000L. Operating manual

10 Overview

- 2 layer 2 loopback;
- 3 layer 3 loopback;
- 1+3 layer 4 loopback.

For more details see section 4. Link speed indicators

Table 3.1. Speed LEDs

Speed	LED	LEDs color
10 Mbit/s	100 and 1000	green
100 Mbit/s	100	green
1000 Mbit/s	1000	green

State LEDs

LINK — link state:

- green connection at physical layer is established;
- off no connection.

ACT — data reception/transmission state:

- green data is being received/transmitted at the moment;
- off no data is being received or transmitted at the moment.

FDX — Ethernet interface state:

- green full-duplex connection is established;
- off half-duplex connection is established.

Power — external power supply (indicator is located in the left bottom corner of front panel):

- green power supply unit is plugged in;
- red device malfunction.
- the button for loopback mode control. To switch between layers 1, 2, 3, 4 or turn loopback off, press this button as many time as needed.

3.2 External connectors

Location of external connectors on the top and bottom panel is shown on the figure 3.2.

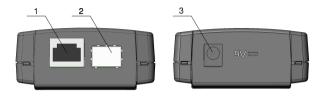


Figure 3.2. External connectors disposition

Tester connectors and equipment to be connected are described in the table 3.2.

Description	Connected equipment
RJ-45 connector to connect to the tested network or equipment	Ethernet cable
SFP-module connectors	SFP-module
External power unit connector	Power supply unit

Table 3.2. Connectors description

3.3 Setting-up procedures

- 1. For device energy supply 9 V power unit is used.
- 2. The device is ready to work after all LEDs flash once for 1 second and LINK indicator color has changed to green.
- 3. To perform analysis connect ETS-1000L to the tested network.
- 4. To turn the device off disconnect the power supply unit.

12 Overview

3.4 Restore device settings

- 1. Disconnect the device from the power supply unit.
- 2. Press and hold the button of a loop's level choice L.
- 3. Connect the device to the power supply unit and wait until the power supply indicator will start blinking. This means the beginning of the firmware backup recovery process.
- 4. Release the button of a loop's level choice L.
- 5. The recovery process takes a few minutes. After the recovery process, all LEDs will flash and the device will reboot and then start to work in standard mode.

3.5 Reset settings to default

- 1. Connect the device to the power supply unit.
- 2. Press and hold the button of a loop's level choice about 20 seconds, until the three LEDs light up for one second. The settings will be reset to the default settings.

4. Loopback

ETS-1000L is intended for loopback performing. Incoming traffic is being retransmitted backward with possibility of source and destination MAC/IP addresses and TCP/UDP port numbers swapping.

Network testing with the Loopback function can be performed at the four OSI layers, jumbo frames are supported (up to 9600 byte).

• At the **Physical layer (L1)** all the incoming traffic (including error frames) is being retransmitted backward without changing.

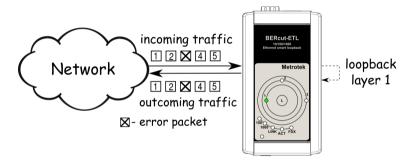


Figure 4.1. Loopback at the physical layer

All the connection schemes use the following notation:

- MAC Src source MAC address;
- MAC Dst MAC address of **ETS-1000L**;
- IP Src source IP address:
- IP Dst destination IP address.
- TCP/UDP Dst destination TCP/UDP port number;
- TCP/UDP Src source TCP/UDP port number.
- At the **Data link layer (L2)**, the incoming traffic (without error frames) is being retransmitted backward with swapping destination and source MAC addresses.

14 Loopback

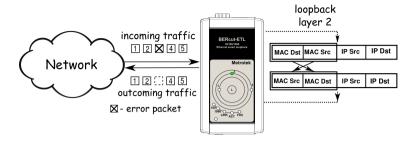


Figure 4.2. Loopback at the data link layer

Note: if a frames destination MAC address is not equal to the MAC address of **ETS-1000L**, the frame will not be retransmitted.

Note: frames with equal destination and source MAC address are not retransmitted at the data link, network and transport layers.

• At the **Network layer (L3)** the incoming traffic (without error packets) is being retransmitted backward with source and destination IP and MAC addresses swapping.

Note: the frame will be retransmitted only if a frames destination MAC address is equal to the MAC address of ETS-1000L.

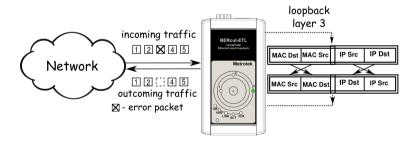


Figure 4.3. Loopback at the network layer

• At the **Transport layer (L4)** the incoming traffic (without error packets) is being retransmitted backward with source and destination IP and MAC addresses swapping and source and destination TCP/UDP addresses swapping.

Note: the frame will be retransmitted only if a frames destination MAC address is equal to the MAC address of ETS-1000L.

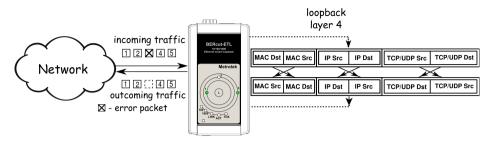


Figure 4.4. Loopback at the transport layer

4.1 Loopback adjustment

Connect ETS-1000L to the Ethernet network and select Loopback layer by pressing L button. Additional parameters (IP address, MAC address, etc.) are being adjusted in the remote management mode (see section 5).

5. Remote management

5.1 Remote control via Telnet protocol

Telnet (Telecommunication Network) is a network protocol used for access to the remote network device. This network protocol allows the user of the personal computer to cooperate with the device on the other end of connection. By means of the commands presented in the table 5.1 and 5.2, it is possible to configure device and view current settings.

To manage ETS-1000L over Telnet protocol connect to the device through the Ethernet interface or directly.

Default IP address of the loopback device is 192.168.1.1.

User name — admin, default password — admin.

Table 5.1. Remote management commands; show mode

Command	Information shown in the console or action performed	
show version	software versions	
show link	the state of the interface	
show ip address	interface IP address	
show ip netmask	interface subnet mask	
show ip gateway	gateway IP address	
show gbe speed	interface speed	
show gbe autonegotiation	interface autonegotiation state	
show gbe mac	interface MAC address	
show oam mode	OAM mode: off/passive	
show oam discovery	state of OAM discovery process	
show tftp	state of a TFTP server: on/off	
show gbe vlan[1–3] id	interface vlan identifier	
show gbe vlan[1–3] priority	interface vlan priority	
show gbe vlans count	number of interface VLAN-tag	
show loopback layer	layer on which the incoming traffic will be retransmitted backward	
show loopback mac swap	show whether the swap MAC address mode is switched on/off	
show loopback mac replace	MAC address replace mode	

Table 5.1. Remote management commands; show mode

show loopback mac src	source MAC address
show loopback mac dst	destination MAC address
show loopback vlan replace	VLAN-tags replace mode
show loopback vlan id	vlan identifier
show loopback vlan priority	vlan priority
show loopback ip replace	IP address replace mode
show loopback ip src	source IP address
show loopback ip dst	destination IP address
show loopback tos replace	ToS replace mode
show loopback tos flags	ToS value
show loopback tos precedence	Precedence value
reboot	reboot device
configure	switch to configuration mode
exit	finish session
help	list of available commands

Table 5.2. Remote management commands (Telnet); configuration mode

Command	Operation
ip address <i>i.i.i.i</i>	set interface IP address
ip netmask <i>i.i.i.i</i>	set interface subnet mask
ip gateway <i>i.i.i.i</i>	set gateway IP address
gbe mac XX:XX:XX:XX:XX	set interface MAC address
gbe speed $10/100/1000/automatic$	set interface speed
gbe autonegotiation on/off	set autonegotiation mode: on/off
gbe vlan[1–3] id int	set interface vlan identifier
gbe vlan[1–3] priority int	set interface vlan priority
gbe vlans count int	set number of interface VLAN-tag
oam off/passive	set off/passive OAM mode
tftp off/on	enable or disable TFTP server
password	change admin's password
loopback layer off/ $1/2/3/4$	set layer on which the incoming traffic will be retransmitted backward
loopback mac swap off/on	swap MAC address mode switch on/off
loopback mac replace off/source/destination/src+dst	set MAC address replace mode
loopback mac src XX:XX:XX:XX:XX	set source MAC address
loopback mac dst XX:XX:XX:XX:XX	set destination MAC address
loopback vlan replace $off/id/priority/id+pr$	select VLAN-tags replace mode
loopback vlan id int	set vlan identifier
loopback vlan priority int	set vlan priority
loopback ip replace $off/source/destination/src+dst$	select IP address replace mode
loopback ip src $i.i.i.i$	set source IP address
loopback ip dst i.i.i.i	set destination IP address
loopback tos replace $off/tos/precedence/tos+prec$	select ToS replace mode
loopback tos flags bin	set ToS value
loopback tos precedence int	set Precedence value
save	save settings; settings will be applied after device reboot
reboot	reboot device
exit	leave configuration mode
help	list of accessible commands

Note: configuration mode commands become effective after **save** and **reboot** commands.

5.2 OAM

OAM (Operations, Administration, and Maintenance) is a protocol of the link state monitoring. The protocol operates at the Data Link Layer of OSI model. To transmit data between two Ethernet-devices, OAM protocol data units (OAMPDU) are used.

An important feature of the OAM protocol is providing the ability to use Loopback mode for the remote end. Both devices should support the IEEE 802.3ah standard.

ETS-1000L and remote device should be connected directly.

The traffic (without error frames) is being retransmitted backward without swapping destination and source MAC addresses

Possible OAM states are described below.

- Passive passive mode. In passive mode, ETS-1000L can only response to Ethernet OAM commands from the remote device, but cannot initiate the Loopback mode.
- Off OAM is disabled.

5.3 ET discovery

ET discovery function allows to switch off loopback mode or to change loopback level (L2, L3 or L4) on **ETS-1000L** using ETS-1000.

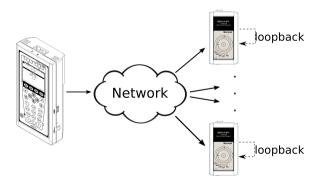


Figure 5.1. Connection diagram

In accordance with connection diagram it is possible to switch loopback mode on for several devices **ETS-1000L** in series. The devices may be in the same or in the different subnets.

Note: the loopback mode on the **ETS-1000L** devices may be switched off or switched on.

Note: for data transmission UDP protocol is used. Destination port number is 32792. Source port number is 32793.

5.4 Upgrading software versions

The last versions of the software for the ${\bf ETS-1000L}$ are accessible on the Internet:

http://www.metrotek.spb.ru/files/b3etl/release

Note: it is necessary to connect the device to the power unit before upgrading versions of the software.

5.4.1 Device preparing for upgrading software versions

To upgrade software versions TFTP protocol is used.

If you use *Unix operating system*:

- 1. Connect **ETS-1000L** to network.
- 2. Establish connection with the device over Telnet protocol, enter user name (admin) and password (admin).
- 3. To enable TFTP server, enter in console terminal in **configure mode**:

tftp on

```
au@madboard: ** telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
Username: admin
Password: *****

BERcut-ETL# configure
OK
BERcut-ETL(config)# tftp on
OK
BERcut-ETL(config)# ■
```

Figure 5.2. Upgrading software versions

When you prepare the device to software upgrading in *Windows operating* system it is necessary to enter in the command line mode and perform the same actions as for Unix operating system.

5.4.2 PC setup for device software upgrading

If you use *Unix operating system*:

1. To set TFTP client to work in binary mode on PC, that is connected to the same network as device, enter in console terminal:

mode binary

2. To connect to the device by means of TFTP client, enter in console terminal:

```
connect IP-address_of_device
```

3. To upload software package file with the new version of software, enter in console terminal:

```
put path-to-file/etl_X.X.X.bin
```

Note: instead of **etl_X.X.X.bin** inscription it is necessary to enter corresponding file name.

```
eg@madboard ~

$ tftp

tftp> mode binary

tftp> connect 192.168.1.1

tftp> put image_0.2.2.fs

Sent 263737 bytes in 14.9 seconds

tftp> |
```

Figure 5.3. Upgrading software versions (Unix)

When you perform device software upgrading in *Windows operating system* enter in console terminal:

ETS-1000L. Operating manual

tftp.exe -i IP-address_of_device put C:\work\etl_X.X.X.bin

Note: instead of **etl_X.X.X.bin** inscription it is necessary to enter corresponding file name.

```
C:WMNDOWSkystem32kcmd.exe
Microsoft Windows XP [Версия 5.1.2600]
(C) Корпорация Майкрософт, 1985-2001.

C:\Documents and Settings\ad>d:

D:\cd \tmp

D:\tmp>tftp.exe -i 192.168.1.1 put d:\tmp\etl_0.2.6-1.bin

WinAgents TFTP Client version 1.4 Copyright (c)2004-2007 by Tandem Systems,Ltd. http://www.winagents.com - Software for network administrators

Transfering file d:\tmp\etl_0.2.6-1.bin was transferred successfully.

263737 bytes transfered for 15 seconds, 17582 bytes/second

D:\tmp>
```

Figure 5.4. Upgrading software versions (Windows)

After a short while a message about command performance will appear in console terminal.

When the software package file is uploaded ${\bf ETS-1000L}$ will automatically reboot and then the updated versions will be used.

Note If current and new versions of the software are very much different, settings are restored to default.

6. Troubleshooting

Table 6.1. Troubleshooting

Failure symptom	Possible reason	Repair method
Connection is lost. LINK indicator does not light up	Incorrect cable connection	Check cable connection state
indication does not right up		Use only one of the device
No telnet connection	Loopback mode is on	Switch off Loopback mode by means of OAM proto- col, ET discovery function or by pressing L button