Bercut-MMT

Data Transmission Interfaces Testing

Operation Manual 1.2.7, 2009

Metrotek

 \bigodot Metrotek, 2006–2010

No part of this document may be reproduced in any form or by any means without the express written permission of Metrotek. Metrotek retains the right to make changes to the hardware, software of **Data Transmission Interfaces Testing Module**, and to this document at any time, without notice.

Contents

1	Introduction	5
	1.1 General	5
	1.2 Documentation Set	6
	1.3 Modifications Notice	6
2	General	7
	2.1 Features Data Transmission Interfaces Testing Module .	7
	2.2 Distribution Kit	8
	2.3 LED States	8
	2.4 Operational Mode Selection	10
3	Selecting Measurement Parameters and Mode	11
	3.1 Interface Configuring	11
	3.2 Test Pattern	15
	3.3 Errors and Alarms Generation	16
4	G.821/G.826/M.2100 Measurements	19
	4.1 Base Parameters	20
	4.2 G.821	22
	4.3 G.826/M.2100	23
	4.4 Measurement duration	25
5	Programming and Signal Status Monitoring	27
6	Measurement Results	29
	6.1 Histogram	29
	6.2 Alarm chronograms	30
\mathbf{A}	Datacom Adapters	33
	A.1 Datacom Adapters: pin designation	34
	A.1.1 X.24/V.11	34
	A.1.2 V.24/V.28	36
	A.1.3 V.24/V.11	38
	A.1.4 V.24/V.35	40

в	Tecl	nnical support												43
	B.1	Contact Information												43

1. Introduction

1.1 General

Bercut-MMT Analyzer is a measurement device designed on the basis of a modular platform. It supports measurements in different segments of modern multi-technology telecommunication networks.

The analyzer's modular design provides its user with virtually unlimited testing and measuring capabilities for both traditional interface parameters and for working out long term diagnostics solutions for the communication network.

Figure 1.1 presents an external view of the device.

Figure 1.1. External view

The **Bercut-MMT** device consists of the system unit and two pluggable modules $(cards^1)$, that provide an interface to such testing objects as PCM E1 streams, data transmission interfaces (Datacom) or Gigabit Ethernet.

The System Unit provides for the basic device functionality, i.e.: control of **Bercut-MMT** platform components, an interface to peripheral devices, power supply monitoring, a user interface and specialized computation, states and measurement modes indication.

 $^{^1}$ Terms $Pluggable\ Cards$ and $Pluggable\ Modules$ are convertible terms in the present manual and will be used interchangeably with equal meaning.

The **Bercut-MMT** System Unit consists of the following main components:

- Processor Module with a preinstalled operation system and nonvolatile data storage devices;
- LCD display with a sensor panel;
- number of multipurpose indication LEDs;
- keyboard;
- batteries;
- connectors for peripheral devices (serial port, USB interfaces, 10/100BaseT LAN interfaces, SD/MMC card connectors and connectors for head-phones and an external power supply);
- connectors for specialized pluggable cards (modules) installation.

Cards usually contain a powerful processor that performs computations typical for a certain measurements mode. Computation results are transferred to the platform central processor that displays them to a user.

Various pluggable cards have different sets of hardware interfaces and programmable options. Each card has a unique serial number and provides information about a manufacturer, types of interfaces, allowed measurement options, etc.

1.2 Documentation Set

Depending on the ordered options, the following operations guides are delivered with the device:

- **Bercut-MMT**. Telecommunication Networks Analyzer Universal Platform.
- Bercut-MMT. E1 Interfaces Analysis.
- Bercut-MMT. Signalling Protocol Analysis.
- Bercut-MMT. Data transmission Interfaces Testing.
- Bercut-MMT. Ethernet 10/100 and Gigabit Ethernet Analysis.
- Bercut-MMT. OPIE Graphical Environment.

1.3 Modifications Notice

The manufacturer reserves the right to make any modifications that do not affect operability of the analyzer **Bercut-MMT** to the device hardware and software and to operation manuals without further notice and at its sole discretion.

2. General

Data transmission interfaces analysis subsystem (Datacom) based on the **Bercut-MMT** platform is designed to perform measurements and diagnostic testing of data transmission equipment working at rates from 50 bit/s to 2 Mbit/s.

2.1 Data transmission interfaces analysis module features

Data transmission interfaces analysis card (Datacom card hereinafter) extends the capabilities of **Bercut-MMT** with testing functions that ensure correctness of services provided by global networks and local data transmission channels. The device task is to help technical stuff to quickly and effectively perform commissioning tests for new data transmission services and to perform diagnostics of existing network. Testing system can be used to carry out the wide range of different measurement tasks including end-to-end connection measurements in the data transmission networks in the DTE/DCE emulation mode, passive monitoring, measurements of main parameters according to G.821/G.826/M.100 recommendations.

The Datacom card supports measurements in the DTE/DCE emulation mode and passive monitoring mode for the following interfaces (complies to **B4-DA** option):

- X.24/V.11 (X.21, X.21bis)
- V.24/V.28
- V.24/V.35
- V.24/V.11 (V.35/RS-449)

To connect to the data transmission interfaces, a dedicated adapter is used that is connected to the **Bercut-MMT** platform with SCSI cable included in the B4-DA card set.

The B4-DA card layout is shown at the Figure 2.1.

Figure 2.1. B4-DA Card

2.2 Distribution Kit

- B4-DA Module (pluggable card) for data transmission interfaces testing.
- A1 Adapter X.24/V.11
- A2 Adapter V24/V.28
- A3 Adapter V.24/V.11 (V.36/RS-449)
- A4 Adapter V.24/V.35
- Card adapter interconnection cable, SCSI type
- Data transmission interfaces analysis. Operations Manual

2.3 LED States

In order to visually monitor measurements conditions and reception of data, the data transmission interfaces analysis card has the number of indicators. Three-color indicators provide enough information to examine the situation and make decision.

Figure 2.2. Indicators

LOS — Loss Of Signal:

- Green signal is permanently present since the moment of reset;
- Red currently no signal;

- Yellow since the moment of reset signal has been lost for some time.
- **LOC** Loss Of Clock:
 - Green since the moment of reset clock has not been lost;
 - Red currently there is no clock;
 - Yellow since the moment of reset clock has been lost for some time.
- **BL** Broken Line:
 - Green since the moment of reset line has not been broken;
 - Red currently line is not broken;
 - Yellow since the moment of reset line has been broken for some time.
- **BSL** Byte Synchronization Lost:
 - Green since the moment of reset byte synchronization has been detected and has not been lost;
 - Red currently there is no byte synchronization;
 - Yellow since the moment of reset byte synchronization has been lost for some time.
- **LSS** Loss of test Sequence Synchronization:
 - Green since the moment of reset test sequence synchronization has been detected and has not been lost;
 - Red currently there is no test sequence synchronization;
 - Yellow since the moment of reset test sequence synchronization has been lost for some time.

ALL0 — All zeroes:

- Green received sequence has no zeroes;
- Red currently received sequence has all zeroes;
- Yellow since the moment of reset there was received sequence with all zeroes for some time.

ALL1 — All ones:

- Green received signal has no sequence of ones;
- Red currently received sequence has all ones;
- Yellow since the moment of reset there was received sequence with all ones for some time.

In case corresponding event cannot or should not be analyzed, LOS, LOC, BL, BSL, LSS, ALL0 and ALL1 indicators are off.

2.4 Operational Mode Selection

The data transmission interfaces analysis card can operate in a mode that is set with the help of **Firmware update utility** application: **O-Menu** \Rightarrow **Settings** \Rightarrow **Firmware update utility** (For details refer to operational mode setup for pluggable cards in the Operations Manual "Bercut-MMT. Telecommunication Systems Universal Analyzer Platform").

3. Selecting Measurement Parameters and Mode

Data transmission interfaces testing subsystem based on the **Bercut-MMT** platform provides for the analysis capability in the terminal mode with **DTE** (Data Termination Equipment) or **DCE** (Data Communication Equipment) emulation or in the passive monitoring mode.

3.1 Interface Configuring

In order to perform measurements, the device should be connected to the objects being tested, using appropriate adapter and cables, and then configuration of B4-DA pluggable card parameters configuration should be performed, with the help of **Datacom Configuration** program. Screen layout during configuring is shown at Figure 3.1.

Figure 3.1. Parameters of Datacom Interfaces

 ${\bf Bercut}\text{-}{\bf MMT}$ configuring sequence for data transmission interfaces testing:

- 1. Activate program Datacom Configuration (O-Menu \Rightarrow Datacom Analysis \Rightarrow Datacom Config).
- 2. Select an active B4-DA card (ref. to Figure 3.2).

② Datacom configur.	ation		\odot
Card: 0 V	Cace Tast pattorn I		
Mode Mode Terminal/DTE O Terminal/DCE O Monitor/TD O Monitor/RD	Data Interface	V.24 async Bits 5 Stop Bit 1 Parity none V	Rate ○ 1 ▼ ×56K ▼ ○ 300 ○ 2048000 2048000 bit/s
			 ↓ ◯ Ξ 5:10

Figure 3.2. Card Selection

- 3. The Mode and data interface allows to define:
 - emulation mode (this mode is used for line path testing):
 - Terminal/DTE the card is connected instead of a terminal as DTE (Data Terminal Equipment) to the line path and is used for signal transmission and reception.
 - Terminal/DCE the card is connected instead of a terminal as DCE (Data Communications Equipment).
 - monitoring mode (this mode is used when it is necessary to implement monitoring access without impact on a path):
 - Monitor/TD card monitors the transmitted stream;
 - Monitor/RD card monitors the received stream.
- 4. The **Data Interface** field allows to select interface type according to the data protocols used (Figure 3.3):
 - X.24;

- V.24 async (asynchronous);
- V.24 sync (synchronous).

Figure 3.3. Interface Type Selection

The device determines physical interface type (V.11, V.28, V.35) automatically, depending on the connected adapter.

- 5. In the asynchronous modes (V.24 async field) it is possible to configure additional parameters (Figure 3.4):
 - **Bits** the size of a "word";
 - Stop bit quantity of stop bits (value of "1,5" determines just stop interval duration);
 - **Parity** parity check mode.

Value	Description
none	no parity check
mark	setting of "one"
space	setting of "zero"
even	even quantity of ones
odd	odd quantity of ones

Table 3.1: Values of the **Parity field**

Figure 3.4. Parity check mode selection

- 6. For synchronous transmission interfaces (in case **V.24 sync** field is selected) the source of synchronization signal can be defined, depending of emulation mode:
 - **TTC** DTE acts as synchronization signal source;
 - $\bullet~{\bf TC}$ DCE acts as synchronization signal source.
- 7. The Rate field allows to set the testing rate (Figure 3.5, p. 15).

Datacom configuration	on		\odot
Card: 0 🔻			
Mode and data interface	e Test pattern	Errors and alarms	
Mode I Terminal/DTE O Terminal/DCE O Monitor/TD O Monitor/RD	Jata Interface — .24 async TD Timing —) TTC (DTE source)) TC (DCE source)	V.24 async Bits 5 Stop Bit 1 Parity none 1	Rate 1 × ×56K × 300 600 1200 2400 4800 8000 9600 16000 19200 32000 ×
			🕩 📗 • 🔾 🗄 5:13

Figure 3.5. Data Transmission Rate Selection

3.2 Test Pattern

After the parameters of interface part of the data transmission system are configured, it is necessary to configure modes of test sequences transmission and reception. This is performed via **Test Pattern** tab of the **Datacom Configuration** program (Figure 3.6, p. 16).

The \mathbf{Type} field allows to select the test sequence type from the following list:

- $2e6 2^6 1$ pseudorandom sequence generation;
- $2e9 2^9 1$ pseudorandom sequence generation;
- $2e^{11} 2^{11} 1$ pseudorandom sequence generation;
- $2e15 2^{15} 1$ pseudorandom sequence generation;
- $2e23 2^{23} 1$ pseudorandom sequence generation;
- All 1 all "ones";
- All 0 all "zeroes";
- 55 interlacing zeroes and ones in the data stream;
- user user defined sequence generation.

Byte 1, Byte 2 and Byte 3 fields allow to define 24 bits of user sequence. In order to edit Byte 1, Byte 2 and Byte 3 fields, press with a stylus one of the windows and insert needed quantity of zeroes and ones using keyboard.

- **Invert TX** field allows to switch on the transmitted test sequence inversion
- $\bullet~\mathbf{Invert}~\mathbf{RX}$ field allows to switch on the received test sequence inversion.

Datacom configuration		\otimes
Card: 0 🔻		
Mode and data interface Test pattern Errors and alarms		
0[2e6] 0 All 0 0 user Byte 1 00000000 0 2e9 0 All 1 0 Byte 2 00000000 0 2e11 0 55 0 Byte 3 00000000 0 2e15 0 1 Invert Tx 0 2e23 0 1 Invert Rx		
Ĵ =	• 🔿 🕯	∃ 5:13

Figure 3.6. Test Sequence Parameters

3.3 Errors and Alarms Generation

If during measurements it is necessary to introduce intentional errors and alarms, it is needed to configure desired event type under the **Errors and Alarms** tab (Figure 3.7, p. 17). Fault events or errors generation is performed within the **Datacom Measurements** program (refer to the section 4, p. 19).

Datacom configuration	◎ ⊗
Card: 0 🔻	
Mode and data interface Test pattern Err	ors and alarms
Errors O SLIP- O SLIP+ O BIT O EPAR O EFRA Speed E-3 * Count 1 * Cont	Alarms © LSS © BSL O LOC Time 0.1 © Cont
	い 日 5:15

Figure 3.7. Errors and Alarms Generation Parameters

The **Errors** parameter defines type of error from the following list:

- EPAR packet parity error generation;
- EFRA packet structure error generation;
- E-bit bit errors generation in the sequence;
- SLIP—— negative slips generation in the test sequence;
- SLIP+ positive slips generation in the test sequence.

The **Speed** fields determines errors insertion rate. It is set with the help of a stylus.

The **Count** field determines quantity of errors to be inserted. **Cont** can be set to determine continuous insertion of errors and numbers.

The Alarms parameter defines type of alarm from the following list:

- LSS loss of synchronization signal with the received test sequence;
- BSL byte synchronization lost signal;
- LOC loss of clock signal.

The **Time** field value determines duration of alarm generation. Numerical value or **Continuous** — continuous generation can be set.

Available alarm events and errors are summarized in the Table 3.2, page 18.

Adapter	Source	Faults	Errors
V.24/V.28	DTE, DCE	LSS	E-bit, SLIP+, SLIP-, EPAR, EFRA
V.24/V.35	DTE	LSS	E-bit, SLIP+, SLIP-
V.24/V.35	DCE	LSS, LOC	E-bit, SLIP+, SLIP-
X.24/V.11	DTE	LSS	E-bit, SLIP+, SLIP-
X.24/V.11	DCE	LSS, LOC, BSL	E-bit, SLIP+, SLIP-
V.24/V.11	DTE	LSS	E-bit, SLIP+, SLIP-
V.24/V.11	DCE	LSS, LOC	E-bit, SLIP+, SLIP-

Table 5.2: Errors and rau	Table	3.2:	Errors	and	Faults
---------------------------	-------	------	--------	-----	--------

4. G.821/G.826/M.2100 Measurements

This measurement mode presents main results of a measurement.

To access the program press the **DATACOM Measurements** icon. Measurement results can be viewed in the following tabs:

- Base Parameters;
- G.821;
- G.826/M.2100.

Switching between screens is performed with a stylus.

To start or to stop the measurements use the **Start/Stop** key. After the **Start** button is pressed, **Error** and **Alarm** buttons appear, that allow to control errors and alarms generation process.

The device screen layout in the Datacom measurements mode is shown at Figure 4.1).

? Measurements							0	\otimes
Card: 🚺 🔻 Save	e) Load							
Base parameters	G.821 G.826/	M2100	Alarm	chronogra	ns Hystog	gram Measur	er 🔳	\blacktriangleright
ET -	RT	_	LOS LOC BL	- - -	%LOS %LOC %BL	- - -		
BIT -	BER	-	BSL	-	%BSL	-		
EPAR -	EPARR	-	LSS ALLO ALL1 SLP+	- - -	%LSS %ALLO %ALL1 %SLP+			
EFRA -	- EFRAR	-	SLP-	-	%SLP-	-		
Start			Err	or		Alarm	1	
🍈 🔤 - 😇						💶 📢 📗	• 🔿 🗉	3 5:16

Figure 4.1. Measurements. Base Parameters

The **Base Parameters** tab screen contains measurement data, linked to special information distortion types, such as code violation, parity errors, stop bit errors, etc. This screen also reports all service provisioning criteria, such as errored seconds and errored seconds percentage.

The **G.821** tab presents all parameters that are measured according to G.821 recommendation "Error performance of an international digital connection operating at a bit rate below the primary rate and forming part of an Integrated Services Digital Network".

The **G.826** tab presents all parameters that are measured according to G.826 recommendation "End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections".

The majority of results have a counter shown in the first column and corresponding rate or percentage value in the second column. For example, **LOS** is shown in the first column while its corresponding parameter **%LOS** – in the second column of the same row. **LOS** is a counter of seconds during which there was no signal, and **%LOS** is percentage.

4.1 Base Parameters

The **Base Parameters** tab view is shown at Figure 4.1.

Basic measured parameters detailed description can be found in Table 4.1.

				-
Param.	Description	Formula	Meas. Unit	Note
RT	Time remaining to the end of testing	Countdown	second	Countdown from the start of testing
ET	Time elapsed from the start of testing	Cumulative count	second	Continuous counting from the start of testing
BIT	Errored bits counter from the start of testing	Cumulative count	error	When test sequence is not synchronized, is not counted
BER	Bit error rate	$\frac{BIT}{ABIT}$		ABIT — quantity of bits received
EPAR	Counter of packets with parity error	Cumulative count	error	Counting is performed for asynchronous interface.
EPARR	Relative number of pack- ets with parity error			Packets with parity error to the total quantity of packets ratio
EFRA	Counter of packets with structure error	Cumulative count	error	Counting is performed for asynchronous interface
EFRAR	Relative number of pack- ets with structure error			Quantity of packets with structure error to the total quantity of packets ratio
LOS	Count of seconds when signal was lost	Cumulative count	second	
%LOS	Percent of seconds when signal was lost	$\frac{LOS}{ET} * 100\%$		

Table 4.1: Main Parameters Description

Param.	Description	Formula	Meas. Unit	Note
LOC	Count of seconds when the clock was lost	Cumulative count	Second	Counting is performed for synchronous interface
%LOC	Percent of seconds when the clock was lost	$\frac{LOC}{ET} * 100\%$	%	
BL	Count of seconds when line was broken	Cumulative count	second	
%BL	Percent of seconds from the start of testing when the line was broken	$\frac{BL}{ET} * 100\%$	%	
BSL	Count of seconds when byte synchronization was lost	Cumulative count	Second	Counting is performed for X.24/V.11 interfaces
%BSL	Count of seconds from the start of testing when byte synchronization was lost	$\frac{BSL}{ET} * 100\%$	%	
LSS	Count of seconds when there was no test se- quence synchronization signal, from start of testing	Cumulative count	Second	
%LSS	Percent of seconds when there was no test se- quence synchronization, from start of testing	$\frac{LSS}{ET} * 100\%$	%	
All 0	Count of seconds when All 0 sequence was re- ceived	Cumulative count	Second	
%All 0	Percent of seconds when All 0 sequence was re- ceived, from the start of testing	$\frac{All0}{ET} * 100\%$	%	
All 1	Count of seconds when All 1 sequence was re- ceived	Cumulative count	second	
%All 1	Percent of seconds when All 1 sequence was re- ceived, from the start of testing	$\frac{All1}{ET} * 100\%$	%	
SLP+	Count of positive slips in the test sequence	Cumulative count	error	
%SLP+	Percent of positive slips in the test sequence from the start of testing	$\frac{SLP+}{ET} * 100\%$	%	
SLP—	Count of negative slips in the test sequence	Cumulative count	second	
%SLP—	Percent of positive slips in the test sequence from the start of testing	$\frac{SLP-}{ET} * 100\%$	%	

Table 4.1: Main Parameters Description (cont.)

4.2 G.821

The **G.821** tab view is shown at Figure 4.2.

(?) Measurements					0	\otimes
Card: 🚺 🔻 Save	e) Load					
Base parameters	G.821 G.8	26/M2100	Alarm chronograms	Hystogram	Measurer 🔍	
BIT SLIP+ US AS ES SES curBER	- BER - SLIP- - %US - %AS - %ES - %SES -					
Start	,)[Error		Alarm	
(),					\$ ¶•○	3 5:16

Figure 4.2. Measurements. ITU-T G.821

Detailed description of measured parameters according to G.821 recommendation is presented in the Table 4.2.

Table 4.2:	G.821	Recommendation	Parameters	Description
------------	-------	----------------	------------	-------------

Parameter	Description	Formula	Meas. Unit	Meas. condition
BIT	Errored bits counter from the start of testing	Cumulative count	error	Is not counted when test sequence is not synchro- nized
BER	Bit error rate	$\frac{BIT}{ABIT}$		ABIT — quantity of bits received
SLIP+	Counter of positive slips in the test sequence	Cumulative count	error	Positive slip is repetition of one bit of the test se- quence.
SLIP-	Counter of negative slips in the test sequence	Cumulative count	error	Negative slip is exclusion of one bit of the test se- quence.
US	Quantity of unavailable seconds ^{1} from the start of testing	Cumulative count	second	

 $^{^{1}}$ Unavailable seconds are counted from the beginning of 10 consecutive severely errored seconds; counting stops at the beginning of 10 seconds without errors.

Parameter	Description	Formula	Meas. Unit	Meas. condition
%US	Percent of unavailable sec- onds from the start of test- ing	$\frac{US}{ET} * 100\%$	%	
ES	Quantity of errored sec- onds from the start of test- ing. These are seconds with at least one error.	Cumulative count	second	Errored second is not counted as unavailable second
%ES	Percent of errored seconds from the start of testing.	$\frac{ES}{AS} * 100\%$	%	
SES	Number of severely errored seconds, from the start of testing (seconds with error rate $> 10^{-3}$).	Cumulative count	second	Severely errored seconds are not counted as un-available seconds.
%SES	Percent of severely errored seconds	$\frac{SES}{AS} * 100\%$	%	
AS	Quantity not available sec- onds (readiness seconds)	$\begin{array}{l} AS = \\ ET - UAS \end{array}$	second	
%AS	Percent of availability from the start of testing	$\frac{AS}{ET} * 100\%$	%	
curBER	Current bit error rate averaged for 10 seconds and less	$\frac{\sum_{i=0}^{T_{cur}}{}_{BIT_i}}{T_{cur}}$		$T_{cur} = 10s$

Table 4.2: G.821 Recommendation Parameters Description (cont.)

4.3 G.826/M.2100

Screen view is shown at Figure 4.3.

(Measurements						(D	\otimes
Ca	rd: 🚺 🔻 Save	e) (Load)							
Ē	ase parameters	G.821	G.826/M2100	Alar	m chronograms	Hystogram	Measurer		
	EB(block)	-							
	BBE	-	%BBE	-					
	US	-	%US	-					
	AS	-	%AS	-					
	ES	-	%ES	-					
	SES	-	%SES	-					
	Start			Er	ror		Alarm		
C	f 📼 • 😇						• ا 🔁		∃ 5:17

Figure 4.3. Measurements. ITU-T G.826/M.2100

 $\rm G.826/M.2100$ recommendation parameters description is presented in the Table 4.3.

Parameter	Description	Formula	Meas. Unit	Meas. condition
EB(block)	Errored blocks counter from the start of testing	EB = CRC	block	
BBE	Counter of blocks with background errors (blocks with errors except blocks received during SES or UAS are counted)	Cumulative count	block	
%BBE	Coefficient of blocks with background errors (excluding blocks received during SES and UAS)	$\frac{BBE}{1000*(AS-SES)} * 100\%$	%	
US	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cumulative count	second	
%US	Percent of unavailable sec- onds from the start of testing	$\frac{US}{ET}$ * 100%	%	
ES	Quantity of errored sec- onds, from the start of testing These are seconds with at least one error.	Cumulative count	second	Errored second is not counted during unavailable second

 $^{^2}$ Unavailable seconds are counted form the beginning of 10 consecutive severely errored seconds; counting stops at the beginning of 10 seconds without errors.

Parameter	Description	Formula	Meas. Unit	Meas. condition
%ES	Percent of errored seconds	$\frac{ES}{AS} * 100\%$	%	
SES	l Number of severely errored seconds, from the start of testing (seconds with error rate > 10^{-3}).	Cumulative count	second	Severely errored sec- ond is not counted during unavailable second
%SES	Percent of severely errored seconds, from the start of testing	$\frac{SES}{AS} * 100\%$	%	
AS	Quantity of available seconds (readiness seconds)	AS = ET - UAS	second	
%AS	Percent of readiness sec- onds from the start of testing	$\frac{AS}{ET}$ * 100%	%	

Table 4.3: G.826 Recommendation Parameters Description (cont.)

4.4 Measurement duration

The **Measurement duration** tab is used to configure test duration. Number of hours and minutes should be specified, on expiry testing will automatically stop.

? Measurements				\odot \otimes
Card: 💽 🔻 Save Load				
rs G.821 G.826/M2100 Alar	n chronograms Hysto	gram Measurement	duration	
hours	minutes			
Measurement duration: 🛛 🔻	0 🔻			
Start	Error)[Alarm	
			🚽 🌒 🚺 •	• 🔵 🗄 5::

Figure 4.4. Screen Layout Measurement Duration

In case zero values are inserted, measurement time is counted starting

from zero until testing is interrupted by user.

5. Programming and Signal Status Monitoring

The states of being tested data transmission interfaces signal circuits may be viewed with the help of "Programming Circuits" program (Figure 5.1). The program also allows to change logical state of some circuits. These circuits are highlighted in the list of states with blue color. Changing of current signal logical level of available circuits is performed by pressing with stylus at the screen in the area of corresponding circuit.

Figure 5.1. Signal Circuits State

The **Alarm chronograms** and **Histogram** sections allow to view obtained measurement results in the graphical form.

Horizontal axis is measurements time scale. Axis starting point corresponds to start of measurements time and then is calibrated according to the scale selected: 1, 5, 15, 30 minutes or 1 hour.

To generate and view graphical reports it is necessary to:

- 1. Activate measurements in the Datacom Measurements \Rightarrow G.821 or G.826/M.2100 program by pressing Start key.
- Navigate to the needed graphical reports section (Datacom Measurements ⇒ Alarms Chronograms program, or Datacom Measurements ⇒Histogram program).
- 3. Select time measurement axis scale.

6.1 Histogram

Screen view is shown at Figure 6.1, p. 30.

Figure 6.1. Alarms and Errors Histogram

The graph depicts distribution information about events observed during the measurement period. When a certain type of event is discovered, a column appears at the graph with the height that increases upon discovery of such type of event during the minute of observation.

Vertical axis has logarithmic scale and depicts values of corresponding parameters.

To view the events graph:

- 1. Event selection is performed with a stylus.
- 2. Use stylus to switch between diagram screens along horizontal axis.

6.2 Alarm chronograms

The chronograms graphically show errors in the stream under testing.

When a alarm is detected during measurements, a column appears at the axis that corresponds to this type of alarm, showing presence of a alarm.

The detected alarms are listed at the left side along vertical axis. Column height does not change, as it only demonstrates that an event has been detected. One column corresponds to one minute of observation.

Figure 6.2. Measurements. Alarm chronograms

- 1. Activate the Alarm chronograms application.
- 2. Set the time axis scale using stylus.
- 3. To scroll the chronogram along horizontal axis, use stylus.

In order to analyze data transmission interfaces, it is necessary to use corresponding adapters that are connected to **Bercut-MMT** with SCSI cable delivered with the device.

This section describes adapters that can be used and presents corresponding connectors diagrams with pin numbering¹.

No	Coding	Interface type	Adapter connectors	
			DTE	DCE
1	B4-DA-A1	X.24/V.11	DB15 male	DB15 female
2	B4-DA-A2	V.24/V.28	DB25 male	DB25 female
3	B4-DA-A3	V.24/V.11	DB37 male	DB37 female
4	B4-DA-A4	V.24/V.35	V.35 male	V.35 female

Table A.1: Datacom Adapters

 $^{^1\}mathrm{Each}$ male contact is connected with corresponding female contact: 1 with 1, 2 with 2 and so on.

A.1 Datacom Adapters: pin designation

A.1.1 X.24/V.11

Figure A.1. Schematic drawing of B4-DA-A1 adapter interface (male)

Pin	Signal	Source	V.24
1	Frame Ground	-	-
2	Data Transmission (A)	DTE	T(A)
3	Control (A)	DTE	C(A)
4	Data Reception (A)	DCE	R(A)
5	Indication (A)	DCE	I(A)
6	Signal Element Timing (A)	DCE	S(A)
7	Byte timing (A)	DCE	B(A)
8	Signal ground	-	G
9	Data Transmission (B)	DTE	T(B)
10	Control (B)	DTE	C(B)
11	Data Reception (B)	DCE	R(B)
12	Indication (B)	DCE	I(B)
13	Signal Element Timing (B)	DCE	S(B)
14	Byte timing (B)	DCE	B(B)

Table A.2: X.24/V.11 Adapter Pins Designation

A.1.2 V.24/V.28

Figure A.2. Schematic drawing of B4-DA-A2 adapter interface (male)

Pin	Signal	Source	V.24
1	Frame Ground	-	FGND
2	Data Transmission	DTE	DT(103)
3	Data Reception	DCE	DR(104)
4	Request to Send	DTE	RTS(105)
5	Clear to Send	DCE	CTS(106)
6	Data Set Ready	DCE	DSR(107)
7	Signal Ground	-	SGND(102)
8	Receiver Line signal detected	DCE	DCD(109)
14	Back-up switching	DTE	BS(116)
15	Transmitter signal element timing (source: DCE)	DCE	TC(114)
16	Stand-by indicator	DCE	SI(117)
17	Receiver signal element timing (source: DCE)	DCE	RC(115)
18	Local Loopback	DTE	LL(141)
20	Data Terminal Ready	DTE	DTR(108)
21	Loopback/Maintenance Test	DTE	RM(140)
22	Calling Indicator	DCE	CL(125)
24	Data Signal Rate Sel/Transmitter sig- nal element timing (source: DTE)	DTE	TTC(113)
25	Test Indicator	DCE	TI(142)

Table A.3: V.24/V.28 Adapter Pins Designation

A.1.3 V.24/V.11

Figure A.3. Schematic drawing of B4-DA-A3 adapter interface (male)

Pin	Signal	Source	V.24
1	Frame Ground	-	FGND
4	Data Transmission	DTE	DT(103a)
5	Transmitter signal element timing (source: DCE)	DCE	TC(114a)
6	Data Reception	DCE	DR(104a)
7	Request to Send	DTE	RTS(105a)
8	Receiver signal element timing (source: DCE)	DCE	RC(115a)
9	Data Set Ready	DCE	DSR(107a)
10	Local Loopback	DTE	LL(141)
11	Clear to Send	DCE	CTS(106a)
12	Data Terminal Ready	DTE	DTR(108a)
13	Received Line signal detected	DCE	DCD(109a)
14	Loopback/Maintenance Test	DTE	RM(140)
17	Transmitter signal element timing (source: DTE)	DTE	TTC(113a)
18	Test Indicator	DCE	TI(142)
19	Signal Ground	-	SGND(102)
20	Common Ground	-	-
22	Data Transmission	DTE	DT(103b)
23	Transmitter signal element timing (source: DCE)	DCE	TC(114b)
24	Data Reception	DCE	DR(104b)
25	Request to Send	DTE	RTS(105b)
26	Receiver signal element timing (source: DCE)	DCE	RC(115b)
27	Data Set Ready	DCE	DSR(107b)
29	Clear to Send	DCE	CTS(106b)
30	Data Terminal Ready	DTE	DTR(108b)
31	Receiver Line signal detected/Data Carrier Detected	DCE	DCD(109b)
35	Transmitter signal element timing (source: DTE)	DTE	TTC(113b)

Table A.4: V.24/V.11 Adapter Pins Designation

A.1.4 V.24/V.35

Figure A.4. Schematic drawing of B4-DA-A4 adapter interface (male)

Pin	Signal	Source	V.24
А	Frame ground	-	FGND
В	Signal Ground	-	SGND(102)
С	Request to Send	DTE	RTS(105)
D	Clear to Send	DCE	CTS(106)
E	Data Set Ready	DCE	DSR(107)
F	Receiver Line signal Detected/Data Carrier Detected	DCE	DCD(109)
Н	Data Terminal Ready	DTE	DTR(108)
J	Calling Indicator	DCE	Cl(125)
L	Local Loopback	DTE	LL(141)
N	Loopback/Maintenance Test	DTE	RM(140)
Р	Data Transmission	DTE	DT(103a)
R	Data Reception	DCE	DR(104a)
S	Data Transmission	DTE	DT(103b)
Т	Data Reception	DCE	DR(104b)
U	Transmitter signal element timing (source: DTE)	DTE	TTC(113a)
V	Receiver signal element timing (source: DCE)	DCE	RC(115a)
W	Transmitter signal element timing (source: DTE)	DTE	TTC(113b)
X	Receiver signal element timing (source: DCE)	DCE	RC(115b)
Y	Transmitter signal element timing (source: DCE)	DCE	TC(114a)
AA	Transmitter signal element timing (source: DCE)	DCE	TC(114b)
NN	Test Indicator	DCE	TI(142)

Table A.5: V.24/V.35 Adapter Pins Designation

B. Technical support

Additional information on the **Bercut-MMT** device and new software can be found at the company site www.metrotek.ru. You also can send an email or call Technical Support Service (refer to **Contact Information**). Please provide problem description and device data that can be found in the device's menu item: *Bercut-MMT Device Information* (O-menu \Rightarrow **Configuring** \Rightarrow **Bercut-MMT Information**), and consist of the following information:

- device serial number (also present on the rear panel);
- version;
- pluggable modules information.

Note: prior to application to the technical support service it is recommended to update the firmware version of the device and to check its operability again.

B.1 Contact Information

Metrotek 105082, Moscow, 26v/2, Bolshaya Pochtovaya street Phone: (495) 961-0071 www.metrotek.ru