Беркут-ММТ

Универсальный анализатор телекоммуникационных сетей

Руководство по эксплуатации Версия 1.0.0 2010

Никакая часть настоящего документа не может быть воспроизведена, передана, преобразована, помещена в информационную систему или переведена на другой язык без письменного разрешения производителя. Производитель оставляет за собой право без дополнительного уведомления вносить не влияющие на работоспособность прибора Беркут-ММТ изменения в аппаратную часть или программное обеспечение, а также в настоящее руководство по эксплуатации.

Оглавление

1	Общие сведения		5
2	Комплект поставки		7
3	Подгот	овка к работе	9
4	Описан	ие платформы	11
	4.1 Кл	авиатура	11
	4.2 Па	нель сменных модулей	12
	4.3 Па	нель системных интерфейсов	13
	4.4 См	енные модули	13
	4.5 Пр	ава пользователей	14
	4.6 Co	стояние батареи	15
5	Удалён	ное управление	17
	5.1 Уда	алённое управление (VNC)	17
	5.2 Под	дключение к ПК по интерфейсу USB	18
	5.3 Ha	стройка сети	19
A	Специф	рикации	21
	А.1 Об	щие характеристики	21
	A.2 Tec	тирование	23

 $\mathbf{4}$

Прибор Беркут-ММТ — универсальный анализатор, который используется для тестирования и диагностики современных сетей связи.

Прибор Беркут-ММТ поддерживает одновременную работу двух сменных модулей, что позволяет проводить тестирование ИКМтрактов, Ethernet/Gigabit Ethernet-сетей, интерфейсов передачи данных Datacom.

Внешний вид прибора представлен на рисунке 1.1.

Рис. 1.1. Внешний вид

2. Комплект поставки

Таблица 2.1. Комплект поставки

Наименование	Кол-во
Платформа Беркут-ММТ	1
Брошюра «Беркут-ММТ. Универсальный анализатор телекоммуникационных сетей. Руководство по эксплуатации»	1
Брошюра «Беркут-ММТ. Универсальный анализатор телекоммуникационных сетей. Паспорт»	1
Блок питания	1
Кабель сетевой 3-полюсный	1
Кабель USB тип А-В, 1,5 м	1
Сумка	1

3. Подготовка к работе

- 1. После извлечения анализатора из упаковки произведите внешний осмотр и проверьте комплектность анализатора в соответствии с таблицей 4.1.
- 2. Выдержите анализатор в нормальных условиях не менее 2 часов.
- Подключите блок питания анализатора к сети (если для питания тестера будет использоваться сетевое напряжение 110– 240 В, с частотой 50–60 Гц).
- Включите анализатор с помощью кнопки включения/выключения питания (см. раздел 4.1).
- 5. Для выключения анализатора нажмите на кнопку включения/выключения питания.

4. Описание платформы

Системный блок прибора Беркут-ММТ содержит следующие основные компоненты:

- процессорный модуль с предустановленной операционной системой и энергонезависимыми устройствами хранения данных;
- жидкокристаллический экран с сенсорной панелью;
- панель светодиодных индикаторов;
- клавиатуру;
- аккумуляторные элементы;
- разъёмы для подключения периферийных устройств;
- разъёмы для установки сменных модулей.

4.1 Клавиатура

Клавиатура прибора Беркут-ММТ содержит колесо прокрутки с возможностью нажатия, светодиодные индикаторы, датчик освещённости и следующие клавиши:

🚽 — клавиша ввода.

Светодиодный индикатор **сеть** отображает состояние подключения внешнего источника питания:

- не горит внешний источник питания не подключен;
- зелёный внешний источник питания подключен, батарея полностью заряжена;
- оранжевый внешний источник питания подключен, идёт заряд батареи;
- красный аппаратная или программная проблема с батареей.

4.2 Панель сменных модулей

Верхняя панель прибора имеет два установочных разъёма для сменных модулей. Вид панели с установленными модулями представлен на рис. 4.1.

Рис. 4.1. Панель сменных модулей

4.3 Панель системных интерфейсов

Вид панели системных интерфейсов представлен на рис. 4.2.

Рис. 4.2. Панель системных интерфейсов

Цифрами на рисунке обозначены:

1, 11 — вентиляционные отверстия.

 $\mathbf{2}-$ разъём для подключения внешнего блока питания.

3 — кнопка аппаратного сброса системы.

4 — кнопка для обновления версии ПО прибора.

5 — интерфейс 10/100 Base-T Ethernet RJ-45.

6 — сервисный USB-интерфейс для подключения к ПК, тип mini B.

7 — интерфейс для подключения внешних USB-устройств, тип А.

8 — USB-интерфейс для подключения к ПК и управления прибором с помощью терминальной программы, тип В .

9 — интерфейс для подключения внешней гарнитуры или колонок с усилителем и микрофона.

10 — динамик.

4.4 Сменные модули

Для успешной установки в прибор сменного модуля необходимо вставить сменный модуль в установочный разъём и завернуть крепёжные винты модуля. Для извлечения модуля необходимо отвернуть крепёжные винты и вынуть модуль из установочного разъёма, потянув за крепёжные винты.

4.5 Права пользователей

Анализатор Беркут-ММТ работает под управлением операционной системы Linux и на нём созданы две учётные записи — root и user.

- root (суперпользователь). Категория пользователей с максимально возможными привилегиями — в этом режиме необходимо предельно внимательно работать с прибором. Пользователю root в конфигурации по умолчанию задан пароль lheujqgfhjkm (словосочетание «другойпароль», набранное при английской раскладке клавиатуры).
- user (пользователь). Категория пользователей с ограниченными правами. Вход под этой учётной записью позволяет проводить измерения, сохранять отчёты и т.д. Пользователю user в конфигурации по умолчанию задан пароль user.

Примечание: учётную запись **гооt** рекомендуется использовать только для обновления ПО анализатора.

4.6 Состояние батареи

Для просмотра информации о текущем состоянии батареи необходимо нажать на значок батареи, расположенный в левом нижнем углу экрана прибора. При этом откроется диалоговое окно, возможный вид и описание которого представлено в таблице ниже.

Таблица 4.1. Состояние батареи

Вид	Описание
Уровень заряда: 75% Оставшееся время: 36 мин Состояние: Заряжается	Идёт заряд батареи. В диалоговом окне выводится: – текущий уровень заряда (75%); – время, оставшееся до окончания заряда (36 мин).
Уровень заряда: 99% Оставшееся время: 347 мин	Батарея полностью заряжена (значок батареи отображается зелёным цветом). В диалоговом окне выводится: – текущий уровень заряда (99%); – оставшееся время работы прибора (347 мин).
Уровень заряда: 56% Оставшееся время: 146 мин	Нормальный уровень заряда батареи (значок батареи отображается жёлтым цветом). В диалоговом окне выводится: – текущий уровень заряда (56%); – оставшееся время работы прибора (146 мин).

Таблица 4.1. Состояние батареи (продолжение)

Уровень заряда: 9% Оставшееся время: 27 мин	Критически низкий уровень заряда ба- тареи (значок батареи отображается красным цветом). В диалоговом окне выводится: – текущий уровень заряда (9%); – оставшееся время работы прибора (27 мин). Для предотвращения потери данных необходимо подсоединить прибор к внешнему источнику питания или
Уровень заряда: Неизвестен Оставшееся время: Неизвестно Состояние: Батарея отсутствует	выключить прибор. Аппаратная проблема: необходим ре- монт/замена батареи в сервисном цен- тре.
Уровень заряда: Неизвестен Оставшееся время: Неизвестно	Проблема с драйвером батареи: необхо- димо обновление версии драйвера.

Примечание: отображаемое значение времени является приблизительным и зависит от режима работы прибора. Анализатор Беркут-ММТ поддерживает удалённое управление, что позволяет выполнять настройку и управлять функциями прибора при помощи персонального компьютера (ПК).

5.1 Удалённое управление (VNC)

Удалённое управление в графическом режиме ¹ осуществляется с использованием протокола VNC (Virtual Network Computing). Такое подключение позволяет получить на мониторе ПК изображение экрана прибора Беркут-ММТ. При помощи компьютерной мыши и клавиатуры можно запускать тесты, сохранять и просматривать результаты измерений, управлять функциями прибора и выполнять другие необходимые действия.

Для удалённого подключения к прибору Беркут-ММТ по протоколу VNC необходимо предварительно установить на ПК программу VNC-клиент, например, UltraVNC (http://www.uvnc.com/).

Для установления соединения между прибором и ПК необходимо подключить Беркут-ММТ к сети, предварительно настроив сеть в соответствии с описанием, представленным в разделе 5.3, и запустить на ПК приложение VNC-клиент. В поле «VNC Server» программы-клиента необходимо ввести IP-адрес прибора.

В случае успешного соединения на экране ПК появится изображение экрана Беркут-ММТ, обновляемое в реальном времени.

¹В базовую конфигурацию не входит. Доступно при дополнительном заказе опции.

5.2 Подключение к ПК по интерфейсу USB

Анализатор Беркут-ММТ предоставляет возможность связи с ПК через интерфейс USB 1.1/2.0 (см. рис. 4.2, разъём 8).

Для подключения прибора к ПК через USB-интерфейс необходимо предварительно установить на ПК драйвер Virtual COM Port.

Примечание: установка драйвера необходима для корректной инициализации прибора в системе.

Файлы драйверов для различных операционных систем и указания по их установке представлены на сайте компании «FTDI Chip»:

(http://www.ftdichip.com/Drivers/VCP.htm).

Примечание: взаимодействие с прибором может обеспечиваться как стандартными средствами ОС Windows 95/98/XP/2000/2003 программой HyperTerminal, так и терминальными программами сторонних производителей.

Для установления соединения между ПК и анализатором необходимо выполнить следующие действия:

- 1. Подключить анализатор Беркут-ММТ к USB-порту компьютера.
- 2. В случае использования программы HyperTerminal, выполнить следующее.
 - Создать новое подключение (меню «Файл» \Rightarrow «Новое подключение»).
 - Задать имя подключения.
 - Определить, каким СОМ-портом в системе является подключенный Беркут-ММТ, обратившись к стандартному приложению «Диспетчер устройств» («Мой компьютер» ⇒ «Свойства» ⇒ «Оборудование» ⇒ «Диспетчер устройств»).
 - Выбрать последовательный порт, к которому подключен анализатор.
 - Установить параметры последовательного порта.
 - Скорость (бит/с): 115200
 - Биты данных: 8

- Четность: нет
- Стоповые биты: 1
- Управление потоком: нет
- 3. После нажатия кнопки «Enter» **HyperTerminal** попытается установить соединение с Беркут-ММТ.
- 4. В случае успешного установления соединения в окно терминальной программы будет выведено приглашение для ввода имени пользователя и пароля (см. раздел 4.5).
- 5. Если необходимо, выполнить настройку сети в соответствии с описанием, представленным в разделе 5.3.

5.3 Настройка сети

Настройку сети производят при удалённом управлении прибором по протоколу VNC, а также при подключении к ПК по интерфейсу USB.

Для выполнения сетевых настроек необходимо:

- 1. Подключиться к анализатору Беркут-ММТ по интерфейсу USB (см. раздел 5.2).
- 2. Открыть файл сетевых настроек в редакторе vi с помощью команды

vi /etc/network/interfaces

3. В случае получения сетевых настроек по DHCP в файле должна присутствовать строка

iface eth0 inet dhcp

4. При задании настроек вручную в файле должны присутствовать строки:

iface eth0 inet static address IP-adpec netmask маска подсети gateway IP-adpec шлюза dns-nameservers IP-adpec базы DNS 5. Для подтверждения настроек необходимо ввести команды

```
ifdown eth0
ifup eth0
```

или выключить, а затем включить прибор.

6. Ввести команду

ifconfig eth0

В случае успешной установки настроек в результате выполнения команды в терминальной программе отобразятся параметры сети, значения которых будут соответствовать выполненным ранее настройкам.

А. Спецификации

А.1 Общие характеристики

Таблица А.1. Общие характеристики

Физические параметры		
Габаритные размеры измерительного блока $(B{\times}III{\times}\Gamma)$	$340 \times 305 \times 56$ мм	
Габаритные размеры блока питания	$145 \times 60 \times 32$ мм	
Масса измерительного блока	не более 3,2 кг	
Масса блока питания	0,45 кг	
Условия эксплуатации		
Диапазон рабочих температур	5-40 °C	
Диапазон температур транспортировки и хранения	-20–35 °C	
Относительная влажность воздуха	80% при температур е $25^{\rm o}{\rm C}$	
Электропитани	e	
Напряжение внешнего источника питания	19 B	
Потребляемый ток	Не более 4,5 А	
Аккумуляторные элементы	NiMH с номинальным напряжени- ем 12 В и ёмкостью 4500 мАч	
Элементы защиты по электропитанию	Защита от перенапряжений	
	Внутренний предохранитель 7 А	
Интерфейсы		
Интерфейс 10/100 Base-T	$1 \times SFP$	
Интерфейс для подключения внешних USB- устройств	$1 \times USB$ тип A, $1 \times USB$ тип B, $1 \times USB$ тип mini-B	
Интерфейс для подключения внешней гарни- туры или колонок с усилителем и микрофона	1×аудио разъём	
Интерфейс для измерительных карт	2×USB 1.1, 12 Мбит/с	
Вход для подключения внешнего блока питания	1×DC-in	
Другое		
Память ОЗУ	DDR SDRAM 128 Мбайт	
Флеш-память (NAND)	1 Гбайт	
Встроенная память	2 Гбайт, microSD-карта	

Процессор	Colibri PXA320 806 МГц, Toradex, формат SO-DIMM200
Дисплей	Цветной графический дисплей 800×600 точек, 18 бит. Резистивная сенсорная панель.
Клавиатура	 Плёночная клавиатура: Клавиши навигации (вверх, вниз, вправо, влево). Клавиша ввода. Клавиша ввода. Клавиша регулировки яр- кости дисплея. Клавиша вызова справки. Клавиша «Домой». Функциональные клавиши М1, М2. Клавиша для вызова справ- ки.
Среднее время автономной работы	6 часов
Время зарядки аккумуляторов	не более 4 часов
Срок службы аккумуляторов	не менее 500 циклов «заряд- разряд»
Языки	Русский, английский

Таблица А.1. Общие характеристики (продолжение)

А.2 Тестирование

Таблица А.2. Тестирование

Карта анализа Е1	Контроль формы импульса	
	Измерение джиттера	
	Измерение вандера	
	Измерение базовых параметров (по рек. G.821/G.826/M.2100)	
	Автоматическая обработка результатов измерений (SLA)	
	Анализ сигнализации в потоке E1: анализ прото- колов сигнализации ОКС-7, ISDN, V5, МТР, ISUP, SCCP, TCAP, ISDN PRI, 2BCK (R1.5)	
Карта анализа интерфейсов передачи данных	Измерения в режиме DTE/DCE и пассивного мониторинга для интерфейсов X.24/V.11 (X.21, X.21bis), V.24/V.28, V.24/V.35, V.24/V.11 (V.35/RS-449)	
	Анализ искажений информации (нарушение кода, ошибки чётности и др.)	
	Измерение параметров по рек. G.821/G.826/M.2100	
Карта анализа сетей Ethernet 10/100/1000 Мбит/с	Тестирование в соответствии с методикой RFC 2544: Throughput (пропускная способность), Latency (за- держка), Frame Loss (уровень потерь кадров), Back- to-Back (предельная нагрузка)	
	IP-тесты: Ping (Эхо-тест), Traceroute (Маршрут), ARP, Arping, Ftp/http	
	Анализ протоколов передачи данных: IPX, SNMP, PPPoE	
	Организация шлейфа на физическом, канальном, сетевом и транспортном уровнях модели OSI	
	Анализ сигнализации в сетях NGN: анализ протоколов сигнализации SIP, MEGACO, SIGTRAN, H.323, H.245	