Беркут-ЕТL

Устройство образования шлейфа в сетях Ethernet/Gigabit Ethernet

Руководство по эксплуатации и паспорт Версия 1.0.8, 2009

Метротек

© Метротек, 2006—2009

Никакая часть настоящего документа не может быть воспроизведена, передана, преобразована, помещена в информационную систему или переведена на другой язык без письменного разрешения производителя. Производитель оставляет за собой право без дополнительного уведомления вносить не влияющие на работоспособность устройства **Беркут-ETL** изменения в аппаратную часть прибора или программное обеспечение, а также в настоящее Руководство по эксплуатации.

Оглавление

1	Введение			
	1.1	Общие сведения	5	
2	Ког	иплектация	7	
3	Описание устройства			
	3.1	Внешний вид	9	
	3.2	Внешние разъёмы	11	
	3.3	Включение/выключение устройства	11	
4	Шлейф (Loopback) 1			
	4.1	Настройка шлейфа	15	
5	Удалённое управление 1'			
	5.1	Управление и настройка по протоколу TELNET	17	
	5.2	OAM	18	
	5.3	ЕТ-обнаружение	19	
	5.4	Обновление версий ПО	20	
		5.4.1 Подготовка устройства к обновлению ПО	20	
		5.4.2 Настройка ПК для обновления ПО прибора	21	
6	Уст	ранение неисправностей	23	

ПАСПОРТ

 $\mathbf{25}$

1. Введение

1.1 Общие сведения

Устройство **Беркут-ЕТL** предназначено для организации шлейфа на физическом, канальном, сетевом и транспортном уровнях модели OSI в сетях IP/Ethernet. Трафик, поступающий на **Беркут-ETL**, перенаправляется обратно с возможностью перестановки как MAC/IP-адресов, так и номеров TCP/UDP-портов отправителя и получателя данных.

Выбор уровня шлейфа в устройстве **Беркут-ЕТL** осуществляется при нажатии на кнопку L (перебором), с помощью протокола ОАМ или функции ET-обнаружение.

2. Комплектация

Таблица 2.1. Комплектация

Наименование	Кол-во
Устройство Беркут-ЕТL	1
Блок питания GS06E (9 B; 0,3 A)	1
Руководство по эксплуатации и паспорт	1
Упаковка	1

3. Описание устройства

3.1 Внешний вид

Рис. 3.1. Внешний вид устройства Беркут-ЕТL

Светодиодные индикаторы

Индикаторы расположены на лицевой панели устройства и отображают текущий уровень режима «Шлейф», состояние Ethernet-соединения и подключения к источнику питания.

Индикаторы уровня шлейфа

- 1 шлейф 1-го уровня;
- 2 шлейф 2-го уровня;
- **3** шлейф 3-го уровня;
- **1**+**3** шлейф 4-го уровня.

Более подробную информацию см. в разделе 4, с. 13.

Индикаторы скорости

Скорость	Описание
10 Мбит/с	одновременно подсвечены зелёным цветом индикаторы «100» и «1000»
100 Мбит/с	подсвечен зелёным цветом индикатор «100»
1000 Мбит/с	подсвечен зелёным цветом индикатор «1000»

Таблица 3.1. Описание светодиодов скорости

Индикаторы состояния

- LINK -состояние соединения:
 - зелёный соединение на физическом уровне установлено;
 - не горит соединения нет.
- **АСТ** активность приёма/передачи данных:
 - зелёный идёт приём/передача данных;
 - не горит приём/передача данных не осуществляется.
- **FDX** состояние режима Ethernet-соединения:
 - зелёный установлено соединение в режиме дуплекса (fullduplex);
 - не горит установлено соединение в режиме полудуплекса (half-duplex).
- **Power** внешнее питание (расположен в нижснем левом углу лицевой панели):
 - зелёный подключён внешний источник питания;
 - красный неисправность устройства.

- при нажатии на клавишу управления режимами шлейфа L происходит переключение между режимами шлейфа 1, 2, 3, 4 и «выключен».

3.2 Внешние разъёмы

Расположение внешних разъёмов на верхней и нижней панелях корпуса устройства показано на рисунке 3.2.

Рис. 3.2. Расположение внешних разъёмов

Назначение разъёмов и подключаемые к ним устройства или кабели приведены в таблице 3.2.

Таблица 3.2. Описание разъёмов устройства

	Назначение разъёма	Подключаемое
		устройство или кабель
1	Разъём RJ-45 для подключения к сети	Kaбель Ethernet
2	Разъём для подключения SFP-модуля	SFP-модуль
3	Разъём для подключения внешнего блока	Блок питания
	питания	

3.3 Включение/выключение устройства

- 1. Для питания устройства используется блок питания 9 В, входящий в комплект поставки.
- При подключении блока питания устройство будет готово к работе после того, как на 1 с одновременно загорятся все индикаторы на лицевой панели и установится постоянная зелёная подсветка индикатора LINK.
- 3. Для проведения анализа необходимо подключить устройство к тестируемой сети.
- 4. Для выключения устройства необходимо отсоединить его от блока питания.

Примечание: для восстановления заводских настроек необходимо подключить устройство к блоку питания, нажать и удерживать кноп-

Беркут-ЕТІ. Руководство по эксплуатации

ку выбора уровня шлейфа (L) в течение 5 с. При этом на 1 с одновременно загораются три светодиодных индикатора уровня шлейфа.

4. Шлейф (Loopback)

Устройство **Беркут-ЕТL** предназначено для образования шлейфа 1-го, 2-го, 3-го или 4-го уровня, в результате чего осуществляется перенаправление трафика¹, поступающего на **Беркут-ЕТL** от тестирующего прибора.

• На физическом уровне (L1) весь входящий трафик, включая повреждённые пакеты², перенаправляется обратно без изменений.

Рис. 4.1. Подключение шлейфа 1-го уровня

• На канальном уровне (L2) входящий трафик, не содержащий повреждённых пакетов, перенаправляется обратно, при этом меняются местами MAC-адреса отправителя и получателя³.

¹Существует возможность передачи кадров размером 1518–9600 байт (Jumbo-кадров).

 $^{^2\}Pi$ акеты с повреждённым заголовком, неверной контрольной суммой (CRC), превышенным значением поля данных.

 $^{^{3}}$ См. примечание на с. 15.

Рис. 4.2. Подключение шлейфа 2-го уровня

На схеме введены следующие обозначения:

- MAC Dst MAC-адрес Беркут-ETL;
- MAC Src MAC-адрес отправителя;
- IP Dst IP-адрес получателя;
- IP Src IP-адрес отправителя;
- TCP/UDP Dst номер TCP/UDP-порта получателя;
- TCP/UDP Src номер TCP/UDP-порта отправителя.
- На сетевом уровне (L3) входящий трафик перенаправляется обратно (без повреждённых пакетов), при этом, помимо перестановки МАС-адресов, меняются местами IP-адреса отправителя и получателя⁴.

Рис. 4.3. Подключение шлейфа 3-го уровня

• На **транспортном уровне (L4)** входящий трафик перенаправляется обратно (без повреждённых пакетов), при этом, помимо перестановки МАС- и IP-адресов, меняются местами номера TCP/UDPпортов отправителя и получателя.

 $^{^{4}}$ См. примечание на с. 15.

Рис. 4.4. Подключение шлейфа 4-го уровня

Примечание: для шлейфа канального (L2), сетевого (L3) и транспортного (L4) уровней пакеты с одинаковыми MAC Dst и MAC Src, содержащиеся во входящем трафике, не перенаправляются. На указанных уровнях шлейфа перенаправляются только те приходящие пакеты, у которых в качестве MAC Dst указан MAC-адрес **Беркут-ETL**.

4.1 Настройка шлейфа

Для простой настройки шлейфа необходимо подключить устройство **Беркут-ETL** к сети Ethernet и выбрать уровень шлейфа с помощью кнопки **L**. Дополнительные параметры (IP-адрес⁵, MAC-адрес и пр.) настраиваются в режиме удалённого управления (см. раздел 5 настоящего руководства).

⁵IP-адрес прибора по умолчанию — 192.168.1.1.

5.1 Управление и настройка по протоколу TELNET

Telnet — протокол для доступа к удалённому сетевому устройству. С помощью команд, представленных в таблицах 5.1 и 5.2, выполняется настройка и просмотр параметров устройства.

Управление устройством **Беркут-ETL**¹ по протоколу Telnet осуществляется через Ethernet-интерфейсы при непосредственном подключении или при подключении через сеть.

IP-адрес прибора по умолчанию — 192.168.1.1.

Имя пользователя — admin, пароль по умолчанию² — admin.

Команда	Информация, выводимая в консоль, или действие
show version	версии ПО
show link	состояние соединения
show ip address	IP-адрес интерфейса
show ip netmask	маска подсети интерфейса
show ip gateway	IP-адрес шлюза
show gbe speed	скорость соединения для Ethernet-интерфейса
show gbe autonegotiation	состояние автосогласования Ethernet-интерфейса
show gbe mac	MAC-адрес Ethernet-интерфейса
show oam mode	состояние режима ОАМ
show oam discovery	состояние обнаружения устройств по протоколу ОАМ
show tftp	состояние tftp-сервера
show vlan mode	состояние VLAN
show vlan id	отобразить VLAN ID
show vlan priority	отобразить VLAN priority
reboot	перезагрузка устройства
configure	переход в режим конфигурации
exit	завершение сеанса
help	список доступных команд

Таблица 5.1. Команды удалённого управления (Telnet). Режим просмотра

¹Режим «Шлейф» должен быть выключен.

²Существует возможность изменения пароля — см. команды в таблице 5.2, с. 18.

Команда	Действие	
ip address	установить IP-адрес интерфейса	
ip netmask	установить маску подсети интерфейса	
ip gateway	установить IP-адрес шлюза	
gbe mac	установить MAC-адрес для Ethernet-интерфейса	
gbe speed	установить скорость соединения для Ethernet- интерфейса (возможные варианты: 10, 100, 1000, automatic 3)	
gbe autonegotiation	настроить режим автосогласования (возможные вари- анты: on, off)	
oam	установить режим OAM (возможные варианты: off, passive)	
vlan mode	установить режим VLAN (возможные варианты: on, off)	
vlan id	установить VLAN ID (задать число от 0 до 4095)	
vlan proirity	установить VLAN priority (задать число от 0 до 7)	
tftp	управление tftp-сервером (возможные варианты: on, off)	
password	изменить пароль для доступа по протоколу TELNET	
save	сохранить настройки; при этом новые настройки всту- пят в силу после перезагрузки устройства	
reboot	перезагрузить устройство	
exit	выйти из режима конфигурации	
help	вывести список доступных команд	

Таблица 5.2. Команды удалённого управления (Telnet). Режим конфигурации

Примечание: параметры режима конфигурации вступают в силу после выполнения команд save и reboot (последовательно).

5.2 OAM

ОАМ (Operations, Administration, and Maintenance — эксплуатация, администрирование и обслуживание) — протокол мониторинга состояния канала, функционирует на канальном уровне модели OSI. Для передачи информации между Ethernet-устройствами используются блоки данных протокола — OAMPDU. Оба устройства должны поддерживать стандарт IEEE 802.3ah и быть непосредственно соединены.

Важной функцией протокола ОАМ является возможность управления режимом «Шлейф» канального уровня (L2) на удалённом устройстве. Трафик, приходящий на устройство **Беркут-ETL**, будет перенаправлен обратно без замены MAC-адресов отправителя и получателя.

 $^{^{3}\}Pi {\rm pu}$ установке режима скорости automatic настройка автосогласования принудительно устанавливается в autonegotiation on.

Возможные режимы ОАМ:

- Passive пассивный режим; в пассивном режиме Беркут-ETL не может инициировать включение режима «Шлейф», а только реагирует на команды включения/выключения шлейфа канального уровня (L2) от удалённого прибора;
- **Off** ОАМ отключён.

5.3 ЕТ-обнаружение

Устройство **Беркут-ЕТL** поддерживает функцию «ЕТ-обнаружение», позволяющую с помощью удалённого тестера-анализатора **Беркут-ЕТ** выключать или изменять режим «Шлейф» канального (**L2**), сетевого (**L3**) или транспортного (**L4**) уровня на приборе **Беркут-ЕТL**.

Рис. 5.1. Схема тестирования

В соответствии со схемой тестирования, можно *последовательно* включать режим «Шлейф» на нескольких устройствах **Беркут-ETL**.

Примечание: изменение режима «Шлейф» посредством функции «ЕТ-обнаружение» может осуществляться как при выключенном, так и при включённом режиме «Шлейф».

Примечание: передача данных осуществляется по протоколу UDP. Порт получателя — 32792. Порт отправителя — 32793.

5.4 Обновление версий ПО

Последние версии ПО для Беркут-ЕТL доступны в сети Интернет:

http://metrotek.spb.ru/files/b3etl/release/

Примечание: перед обновлением программных пакетов необходимо подключить прибор к внешнему источнику электропитания.

5.4.1 Подготовка устройства к обновлению ПО

Обновление ПО устройства **Беркут-ETL** осуществляется с помощью протокола передачи файлов **TFTP**.

Для UNIX-подобных систем

Для подготовки прибора к обновлению ПО необходимо выполнить следующие действия.

- 1. Подсоединить прибор к сети.
- 2. Установить соединение с устройством по протоколу TELNET и ввести имя пользователя (*admin*) и пароль (*admin*).
- 3. Разрешить работу tftp-сервера, выполнив в режиме конфигурации (см. таблицы 5.1, с. 17, 5.2, с. 18) команду

tftp on

au@madboard: ~ - + × au@madboard:~\$ telnet 192.168.1.1 Trying 192.168.1.1... Connected to 192.168.1.1. Escape character is '^]'. Username: admin Password: ***** BERcut-ETL Gigabit Ethernet Loopback. (C) 2008 STC Metrotek BERcut-ETL# configure 0K BERcut-ETL(config)# tftp on 0K BERcut-ETL(config)#

Рис. 5.2. Подготовка прибора к обновлению ПО

Для OC Windows

При подготовке прибора к обновлению ПО в ОС Windows необходимо войти в режим командной строки (Пуск \Rightarrow Выполнить \Rightarrow cmd) и осуществить ту же последовательность действий, что и для Unix-подобных систем.

5.4.2 Настройка ПК для обновления ПО прибора

Для UNIX-подобных систем

1. Настроить tftp-клиент на ПК (выполнить в консоли команду tftp), подключённом к той же сети, что и прибор, для передачи данных в двоичном (binary) режиме командой

mode binary

2. Подключиться к прибору при помощи tftp-клиента командой

connect IP-адрес_устройства

3. Загрузить на прибор файл с новой версией ПО командой

put <path-to-file>/etl_x.x.x.bin

Примечание: вместо записи «etl_x.x.x.bin» следует указать соответствующее имя файла (рис. 5.3).

Рис. 5.3. Обновление ПО прибора для UNIX-подобных систем

Для OC Windows

В ОС Windows для обновления ПО прибора следует в консольном терминале ввести команду

```
tftp.exe -i IP-адрес_устройства put <path-to-file>\etl_x.x.x.bin
```

Примечание: вместо записи «etl_x.x.x.bin» следует указать соответствующее имя файла (см. рис. 5.4).

Рис. 5.4. Обновление ПО прибора для ОС Windows

По истечении нескольких секунд в терминале появится сообщение о результате выполнения команды.

После загрузки файла **Беркут-ETL** автоматически перезагрузится (восстановление системы займет около одной минуты), и затем будут использоваться обновлённые версии ПО.

Примечания

- Если предыдущая и новая версии ПО значительно отличаются, то настройки прибора могут измениться на заводские после обновления версии. Проверить текущие параметры можно с помощью команд удалённого управления, см. таблицу 5.1, с. 17.
- В случае неудачного обновления ПО функции устройства можно восстановить, удерживая при включении питания нажатой кнопку выбора уровня шлейфа в течение 5 с. Восстановление займёт около 1 мин.

6. Устранение неисправностей

Характерные	Возможная причина	Метод устранения
признаки		
неисправно-		
СТИ		
Отсутствие	Некорректное подклю-	Проверить целостность подключаемого
соединения (све-	чение кабеля к прибору	кабеля и снова подсоединить его к разъё-
тодиод LINK не		му до щелчка
загорается)		
	Одновременное подклю-	Использовать для работы только один из
	чение кабелей к разъё-	разъёмов устройства
	мам RJ-45 и SFP	
Не удаётся уста-	Включён режим	Выключить режим «Шлейф» с помо-
новить соедине-	«Шлейф»	щью протокола ОАМ, функции ЕТ-
ние по протоко-		обнаружения или нажатием клавиши ${f L}$
лу TELNET		(перебором)

ΠΑСΠΟΡΤ

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Устройство **Беркут-ЕТL** соответствует требованиям нормативного документа «РД 45.176-2001 Аппаратура связи, реализующая функции коммутации кадров в локальной сети на уровне звена данных. Технические требования».

1.2. Предприятие-изготовитель:

ООО «НТЦ-Метротек» 105082, Москва, Б.Почтовая ул., 26 В, стр.2, оф. 139 Тел.: (495) 961-0071, (812) 560-2919 www.metrotek.ru www.metrotek.spb.ru

2. СВИДЕТЕЛЬСТВО О ПРИЁМКЕ

2.1. Устройство Беркут-ЕТL, серийный номер _____

изготовлено и принято в соответствии с обязательными требованиями государственных стандартов, действующей технической документацией и признано годным для эксплуатации.

Начальник ОТК

М. П.

личная подпись

Фрост М.А. расшифровка подписи

число, месяц, год

3. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

3.1. Предприятие-изготовитель гарантирует соответствие качества устройства требованиям технических условий при соблюдении потребителем условий и правил транспортирования, хранения и эксплуатации, указанных эксплуатационной документацией.

3.2. Гарантийный срок эксплуатации — 12 месяцев с момента ввода устройства в эксплуатацию, но не более 18 месяцев с момента отгрузки потребителю.

Гарантийный срок хранения — 6 месяцев со дня изготовления устройства.

3.3. Предприятие-изготовитель обязано в течение срока гарантии производить безвозмездно замену или ремонт устройства, в том числе если в течение этого срока потребителем будет обнаружено несоответствие требованиям технических условий.

Внимание! Без предъявления паспорта претензии к качеству работы устройства не принимаются и гарантийный ремонт не производится.

Дата реализации устройства

M. Π .

Поставщик

подпись

4. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

4.1. В случае отказа устройства в работе или его неисправности в период гарантийных обязательств, а также обнаружения некомплектности при первичной приёмке устройства потребителем должен быть составлен акт о необходимости ремонта и отправки изделия изготовителю.

В акте должны быть указаны следующие данные:

- обозначение устройства, заводской номер, дата выпуска и дата ввода в эксплуатацию;
- характер дефекта (или некомплектности).

Акт высылается по адресу, указанному в пункте 1.2 Паспорта.

4.2. Рекламацию на устройство не предъявляют:

- по истечении гарантийного срока;
- при нарушении потребителем правил эксплуатации, транспортировки и хранения, предусмотренных руководством по эксплуатации.