Беркут-ЕТL

Устройство образования шлейфа в сетях Ethernet/Gigabit Ethernet

Руководство по эксплуатации и паспорт Версия 1.0.2, 2009

Метротек

© Метротек, 2006—2009

Никакая часть настоящего документа не может быть воспроизведена, передана, преобразована, помещена в информационную систему или переведена на другой язык без письменного разрешения производителя. Производитель оставляет за собой право без дополнительного уведомления вносить не влияющие на работоспособность тестера **Беркут-ETL** изменения в аппаратную часть прибора или программное обеспечение, а также в настоящее Руководство по эксплуатации.

Оглавление

1	Введение	5
	1.1 Общие сведения	5
2	Комплектация	7
3	Описание устройства	9
	3.1 Передняя панель	9
	3.2 Внешние разъёмы	11
	3.3 Включение/выключение устройства	11
4	Шлейф (Loopback)	13
	4.1 Настройка шлейфа	14
5	Удалённое управление	15
	5.1 Удалённое управление	15
	5.2 OAM	16
	5.3 Обновление версий ПО	17
6	Устранение неисправностей	19
п	ІАСПОРТ	21

1. Введение

1.1 Общие сведения

Устройство **Беркут-ЕТL** предназначено для организации шлейфа на физическом, канальном и сетевом уровнях модели OSI при тестировании Ethernet/Gigabit Ethernet сетей. В устройстве реализована поддержка протокола OAM. Устройство **Беркут-ЕТL** имеет возможность удалённого управления для настройки параметров, просмотра информации о приборе, состоянии OAM и др.

2. Комплектация

Таблица 2.1. Комплектация

Наименование	Кол-во
Устройство Беркут-ЕТL	1
Блок питания GS06E (9 B; 0,3 A)	1
Руководство по эксплуатации и паспорт	1
Упаковка	1

3. Описание устройства

3.1 Передняя панель

Вид передней панели устройства **Беркут-ETL** представлен на рисунке 3.1.

Рис. 3.1. Вид передней панели устройства

Светодиодные индикаторы.

Зелёный цвет индикаторов соответствует выбранному уровню шлейфа:

1 — шлейф 1-го уровня;

- **2** шлейф 2-го уровня;
- **3** шлейф 3-го уровня.

L

Кнопка управления режимами шлейфа. Переключение между уровнями (1, 2, 3 и «выключен») осуществляется перебором, при нажатии на кнопку.

Индикаторы скорости.

Отображают скорость соединения в данный момент:

Скорость	Подсветка индикаторов
10 Мбит/с	одновременно подсвечены зелёным цветом индикаторы «100» и «1000»
100 Мбит/с	подсвечен зелёным цветом индикатор «100»
1000 Мбит/с	подсвечен зелёным цветом индикатор «1000»

LINK

Индикатор состояния соединения.

- зелёный наличие соединения в данный момент;
- отсутствие индикации отсутствие соединения в данный момент.

ACT

Индикатор, отображающий активность приёма/передачи данных.

- зелёный происходит процесс приёма/передачи данных;
- отсутствие индикации процесс приёма/передачи данных остановлен.

FDX

Индикатор состояния интерфейса Ethernet:

- зелёный соединение настроено в режиме дуплекса (full-duplex);
- отсутствие индикации соединение настроено в полудуплексный режим (half-duplex).

Power

Индикатор питания от внешнего источника постоянного напряжения 9 В.

3.2 Внешние разъёмы

Расположение внешних разъёмов на верхней торцевой панели корпуса устройства показано на рисунке 3.2.

Рис. 3.2. Верхняя торцевая панель устройства

Назначение разъёмов и подключаемые к ним устройства приведены в таблице 3.2.

m < 0.0	0	••	
Таблица З 2	Описание	DASTEMOR	VCTDOWCTBA
raomina 0.2	· Officialitie	Pasterion	yerponerba

Назначение разъёмов	Подключаемое
	устройство или кабель
Разъём RJ-45 для подключения к сети	Кабель Ethernet
Разъём для подключения SFP-модуля	SFP-модуль
Разъём для подключения внешнего блока	Блок питания
питания	

3.3 Включение/выключение устройства

- 1. Извлеките устройство из упаковки, произведите внешний осмотр. Проверьте комплектность анализатора в соответствии с таблицей 2.1.
- 2. Подключите устройство в соответствии с рисунком 3.3.
- 3. Для питания прибора используется блок питания 9 В.
- 4. После подключения блока питания прибор готов к работе примерно через 10-15 секунд.
- 5. Для выключения устройства необходимо отключить его от блока питания.

Тестер-анализатор

Рис. 3.3. Схема подключения Беркут-ЕТL

4. Шлейф (Loopback)

Для тестирования сетей по методике RFC 2544, а также для решения ряда других задач необходима функция организации шлейфа — Loopback. Функция шлейфа позволяет выполнять тестирование сети без изменения её настроек. Тестирование может быть реализовано на разных уровнях модели OSI.

• На физическом уровне (L1) весь входящий трафик, включая повреждённые ¹пакеты, перенаправляется обратно без изменений.

Рис. 4.1. Подключение шлейфа 1-го уровня

 На канальном уровне (L2) входящий трафик, не содержащий «битых» пакетов, перенаправляется обратно, при этом меняются местами MAC-адреса отправителя и получателя.

Рис. 4.2. Подключение шлейфа 2-го уровня

¹Пакеты с поврежденным заголовком, неверной контрольной суммой (CRC), превышенным значением поля данных и другое.

На схеме введены следующие обозначения:

- MAC Dst MAC-адрес получателя;
- MAC Src МАС-адрес отправителя;
- IP Dst IP-адрес получателя;
- IP Src IP-адрес отправителя.

Примечание: для шлейфа канального (L2) и сетевого (L3) уровней пакеты с одинаковыми MAC Dst и MAC Src, содержащиеся во входящем трафике, не перенаправляются.

• На сетевом уровне (L3) входящий трафик перенаправляется обратно (без повреждённых пакетов), при этом, помимо перестановки MAC-адресов, меняются местами IP-адреса отправителя и получателя.

Рис. 4.3. Подключение шлейфа 3-го уровня

4.1 Настройка шлейфа

Для простой настройки шлейфа необходимо подключить устройство **Беркут-ЕТL** к сети Ethernet и выбрать уровень шлейфа с помощью кнопки **L** (перебором). Дополнительные параметры (IP-адрес, MAC-адрес и пр.) настраиваются в режиме удалённого управления (см. раздел 5 настоящего руководства).

5.1 Удалённое управление

Telnet (Telecommunication Network) — протокол для доступа к удалённому сетевому устройству. Этот протокол позволяет пользователю ПК взаимодействовать с устройством, находящимся на другом конце соединения. С помощью команд, представленных в таблице 5.1, возможно осуществлять настройку устройства, просматривать существующие настройки и выполнять команды удалённого управления.

Для управления прибором по протоколу Telnet необходимо подключиться к **Беркут-ETL**¹ через Ethernet интерфейс. Способ подключения зависит от используемой операционной системы ПК.

IP-адрес прибора по умолчанию — 192.168.1.1.

Имя пользователя - admin, пароль - admin.

Команда	Информация, выводимая в консоль, или действие
show version	версии ПО
show link	состояние интерфейса
show ip address	IP-адрес интерфейса
show ip netmask	маска подсети интерфейса
show ip gateway	настройки шлюза по умолчанию
show mac	МАС-адрес интерфейса
show oam mode	состояние режима ОАМ
show oam discovery	состояние обнаружения устройств по протоколу ОАМ
show tftp	состояние tftp-сервера
reboot	перезагрузка устройства
configure	переход в режим конфигурации
exit	завершение сеанса
help	список доступных команд

Таблица 5.1. Команды удалённого управления (Telnet). Режим просмотра

¹Режим «Шлейф» должен быть выключен.

Команда	Действие	
ip address	установить IP адрес интерфейса	
ip netmask	установить маску подсети интерфейса	
ip gateway	установить IP адрес шлюза	
mac	установить МАС-адрес интерфейса	
oam	установить режим ОАМ (возможные варианты: off, active, passive)	
tftp	управление tftp-сервером (возможные варианты: on, off)	
password	изменить пароль	
save	сохранить настройки; при этом новые настройки всту- пят в силу после перезагрузки устройства	
reboot	перезагрузить устройство	
exit	выйти из режима конфигурации	
help	вывести список доступных команд	

Таблица 5.2. Команды удалённого управления (Telnet). Режим конфигурации

5.2 OAM

ОАМ (Operations, Administration, and Maintenance — эксплуатация, администрирование и обслуживание) — протокол мониторинга состояния канала, функционирует на канальном уровне модели OSI. Для передачи информации между Ethernet-устройствами используются блоки данных протокола — OAMPDU. Оба устройства должны поддерживать стандарт IEEE 802.3ah и быть непосредственно соединены.

Возможные состояния ОАМ:

- Active активный режим; в активном режиме порт может посылать команды на обнаружение устройств и реагировать на команды Ethernet OAM от удалённого устройства;
- **Passive** пассивный режим; в пассивном режиме порт не может инициировать включение функции «Шлейф», а может только реагировать на команды Ethernet OAM от удалённого устройства;
- **Off** ОАМ отключён.

5.3 Обновление версий ПО

Последние версии ПО (программного обеспечения) для **Беркут-ЕТL** доступны в сети Интернет (http://www.metrotek.spb.ru). Для обновления текущей версии ПО необходимо выполнить последовательность действий:

- 1. Установить соединение с устройством по протоколу TELNET.
- 2. Разрешить работу TFTP-сервера, выполнив в режиме конфигурации команду «tftp on».
- 3. Настроить TFTP-клиент для работы в двоичном (binary) режиме.
- 4. Подключиться к устройству при помощи TFTP-клиента.
- 5. Загрузить файл с новой версией ПО.

После загрузки файла **Беркут-ETL** автоматически перезагрузится и будут использоваться обновлённые версии ПО.

Примечания:

- Если предыдущая и новая версии ПО значительно отличаются, после обновления версии настройки устройства могут измениться на заводские.
- В случае неудачного обновления функции устройства можно восстановить, удерживая при включении питания нажатой кнопку выбора уровня шлейфа в течение 5 с. Восстановление происходит в течение 1 минуты.

6. Устранение неисправностей

Таблица 6.1. Возможные неисправности

Характерные признаки неисправности	Возможная причина	Метод устранения
Потеря соединения	Некорректное подклю- чение кабеля к прибору	Проверить целостность подклю- чаемого кабеля и снова подсоеди- нить его к разъёму до щелчка
	Одновременное исполь- зование медного и опти- ческого кабелей	Применять для работы только один из разъёмов прибора

ΠΑСΠΟΡΤ

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Устройство **Беркут-ЕТL** соответствует требованиям нормативного документа «РД 45.176-2001 Аппаратура связи, реализующая функции коммутации кадров в локальной сети на уровне звена данных. Технические требования».

1.2. Предприятие-изготовитель:

ООО «НТЦ-Метротек» 105023, Москва, Электрозаводская ул., 52 Тел.: (495) 961-0071, (812) 560-2919 www.metrotek.ru www.metrotek.spb.ru

2. СВИДЕТЕЛЬСТВО О ПРИЁМКЕ

2.1. Устройство Беркут-ЕТL, серийный номер _____

изготовлено и принято в соответствии с обязательными требованиями государственных стандартов, действующей технической документацией и признано годным для эксплуатации.

Начальник ОТК

М. П.

личная подпись

Фрост М.А. расшифровка подписи

число, месяц, год

3. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

3.1. Предприятие-изготовитель гарантирует соответствие качества устройства требованиям технических условий при соблюдении потребителем условий и правил транспортирования, хранения и эксплуатации, указанных эксплуатационной документацией.

3.2. Гарантийный срок эксплуатации — 12 месяцев с момента ввода устройства в эксплуатацию, но не более 18 месяцев с момента отгрузки потребителю.

Гарантийный срок хранения — 6 месяцев со дня изготовления устройства.

3.3. Предприятие-изготовитель обязано в течение срока гарантии производить безвозмездно замену или ремонт устройства, в том числе если в течение этого срока потребителем будет обнаружено несоответствие требованиям технических условий.

Внимание! Без предъявления паспорта претензии к качеству работы устройства не принимаются и гарантийный ремонт не производится.

Дата реализации устройства

M. Π .

Поставщик

подпись

4. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

4.1. В случае отказа устройства в работе или неисправности его в период гарантийных обязательств, а также обнаружения некомплектности при первичной приёмке устройства потребителем, должен быть составлен акт о необходимости ремонта и отправки изделия изготовителю.

В акте должны быть указаны следующие данные:

- обозначение устройства, заводской номер, дата выпуска и дата ввода в эксплуатацию;
- характер дефекта (или некомплектности).

Акт высылается по адресу, указанному в пункте 1.2 Паспорта.

4.2. Рекламацию на устройство не предъявляют:

- по истечении гарантийного срока;
- при нарушении потребителем правил эксплуатации, транспортировки и хранения, предусмотренных руководством по эксплуатации.